Sheila
Moderator
Long-term stress can be a killer. There's probably not a one of us on the board that doesn't deal with-huge amounts of stress. The following url contains some useful information and at the close, some easy forms to help reduce stress.
Excerpts from: http://health.yahoo.com/stress-over...ology_Today_articles_pto-19960101-000027.html
Psychological stress doesn't just put your head in a vise. New studies document exactly how it tears away at every body system--including your brain. But get this: The experience of stress in the past magnifies your reactivity to stress in the future. So take a nice deep breath and find a stress-stopping routine this instant....
Yet not even this familiarity can cushion the findings of research: The effects of stress are even more profound than imagined. It penetrates to the core of our being. Stress is not something that just grips us and, with time or effort, then lets go. It changes us in the process. It alters our bodies--and our brains.
We may respond to stress as we do an allergy. That is, we can become sensitized, or acutely sensitive, to stress. Once that happens, even the merest intimation of stress can trigger a cascade of chemical reactions in brain and body that assault us from within. Stress is the psychological equivalent of ragweed. Once the body becomes sensitized to pollen or ragweed, it takes only the slightest bloom in spring or fall to set off the biochemical alarm that results in runny noses, watery eyes, and the general misery of hay fever. But while only some of us are genetically programed to be plagued with hay fever, all of us have the capacity to become sensitized to stress.
Stress sensitization is uncharitably subversive. While the chemical signaling systems of body and brain are running amok in a person sensitized to stress, that person's perception of stress remains unchanged. It's as if the brain, aware that the burner on the stove is cool, still signals the body to jerk its hand away. "What happens is that sensitization leads the brain to re-circuit itself in response to stress," says psychologist Michael Meaney, Ph.D., of McGill University. "We know that what we are encountering may be a normal, everyday episode of stress, but the brain is signaling the body to respond inappropriately." We may not think we are getting worked up over running late for an appointment, but our brain is treating it as though our life were on the line.
Because some stress is absolutely necessary in living creatures, everyone has a built-in gauge that controls our reaction to it. It's a kind of biological thermostat that keeps the body from launching an all-out response literally over spilled milk. Sensitization, however, lowers the thermostat's set point, says psychologist Jonathan C. Smith, Ph.D., founder and director of the Stress Institute at Roosevelt University in Chicago. As a result, the body response typically reserved for life-threatening events is turned on by life's mundane aggravations. In this hothouse of hyperreactivity, bio-chemicals unleashed by stress may boil over at the most trivial of events, like our missing a train or being shunted to voice mail.
"Years of research has told us that people do become sensitized to stress and that this sensitization actually alters physical patterns in the brain," says Seymour Levine, Ph.D., of the University of Delaware. "That means that once sensitized, the body just does not respond to stress the same way in the future. We may produce too many excitatory chemicals or too few calming ones; either way we are responding inappropriately."
The revelation that stress itself alters our ability to cope with stress has produced yet another remarkable finding: Sensitization to stress may occur before we are old enough to prevent it ourselves. New studies suggest that animals from rodents to monkeys to humans may experience still undetermined developmental periods during which exposure to stress is more damaging than in later years. "For example, we have known that losing a parent when you are young is harder to get over than if your parent dies when you are an adult," says Jean King, Ph.D., of the University of Massachusetts Medical School. "What we now believe is that a stress of that magnitude occurring when you are young may permanently rewire the brain's circuitry, throwing the system askew and leaving it less able to handle normal, everyday stress."
It is the stew of chemicals released by such provocations that ultimately explains the noose stress ties between mind and body. "This new paradigm of stress demonstrates that there is a link between psychological events and physical eruptions, between mind and body," King says. "The psychological events that are most deleterious probably occur during infancy and childhood--an unstable home environment, living with an alcoholic parent, or any other number of extended crises." The new paradigm also firmly ties everyday psychological stress to such suspect complaints as ulcers, headaches, and fatigue....
Whether we end up stressed-out executives or laid-back surfers, we all start out with the same biological machinery for responding to stress. Stress activates primitive regions of the brain, the same areas that control eating, aggression, and immune response. It switches on nerve circuits that ignite the body's fight-or-flight response as if there were a life-threatening danger.
From this evidence researchers have concluded that the stress response is "wired" into the brain, that we inherit the same ancient reactions that jump-started hunter-gatherers to escape a charging saber-tooth tiger without having to give their actions time-consuming thought. Only this same life-or-death reaction is now called into play largely by non-life-threatening situations. Studies have found the same fight-or-flight circuits all working overtime in response to such varied stressors as extreme exercise, the death of a loved one, an approaching deadline. ....
By responding to the stress of everyday life with the same surge of biochemicals released during major threats, the body is slowly killing itself. The biochemical onslaught chips away at the immune system, opening the way to cancer, infection, and disease. Hormones unleashed by stress eat at the digestive tract and lungs, promoting ulcers and asthma. Or they may weaken the heart, leading to strokes and heart disease. "Chronic stress is like slow poison," King observes. "It is a fact of modern life that even people who are not sensitized to stress are adversely affected by everything that can go wrong in the day."
If stress has a central command post, it is the hypothalamus, a primitive area of the brain located near where the spine runs into the skull. By way of a dazzling array of hormonal signals, the hypothalamus is closely connected with the nearby pituitary gland and the distant adrenal glands, perched atop the kidneys. The so-called hypothalamicpituitary axis (HPA) has a virtual monopoly on basic body functions. It regulates blood pressure, heart rate, body temperature, sleep patterns, hunger and thirst, and reproductive functions, among many other activities.
About the size of a grape, the hypothalamus does its work by releasing two types of signaling hormones; those that stimulate glands to release other hormones and those that inhibit the glands from performing their job. Among the best known of these hormones are follicle-stimulating and luteinizing hormones, which, dispatched on a strict schedule from the pituitary, begin the monthly process that prepares women for pregnancy or menstruation.
Like a cherry attached by its stem, the pituitary gland hangs off the hypothalamus waiting to receive instructions on which of its many hormones to release and in what quantity. In hormonal terms it is the little gland that could. The pituitary releases substances that regulate growth, sex, skin color, bone length, and muscle strength. It also releases adrenocorticotropin, a hormone that activates the third part of the body's stress system, the adrenal glands.
When stress sets off the usual ferocious communication between the hypothalamus and the pituitary, the buck stops at the adrenal glands. They manufacture and release the true stress hormones--dopamine, epinephrine (also known as adrenaline), norepinephrine (noradrenaline), and especially cortisol. So responsive to the adrenal hormones are basic body functions like blood flow and breathing that even minute changes in levels of these substances can significantly affect health.
Slight overproduction of dopamine can constrict blood vessels and raise blood pressure; a shift in epinephrine could precipitate diabetes, or asthma, by constricting tiny airways in the lungs. If the adrenal gland slacks off on cortisol production the result may be obesity, heart disease, or osteoporosis; too much of the hormone can cause women to take on masculine traits like hair growth and muscle development and lead to one of the greatest fears of all for aging men--baldness. High levels of cortisol also may kill off brain cells crucial for memory.
Last Updated: 01/01/96
Copyright © 1991-2007 Sussex Publishers. All rights reserved.
The paper contains lots more.
Excerpts from: http://health.yahoo.com/stress-over...ology_Today_articles_pto-19960101-000027.html
Psychological stress doesn't just put your head in a vise. New studies document exactly how it tears away at every body system--including your brain. But get this: The experience of stress in the past magnifies your reactivity to stress in the future. So take a nice deep breath and find a stress-stopping routine this instant....
Yet not even this familiarity can cushion the findings of research: The effects of stress are even more profound than imagined. It penetrates to the core of our being. Stress is not something that just grips us and, with time or effort, then lets go. It changes us in the process. It alters our bodies--and our brains.
We may respond to stress as we do an allergy. That is, we can become sensitized, or acutely sensitive, to stress. Once that happens, even the merest intimation of stress can trigger a cascade of chemical reactions in brain and body that assault us from within. Stress is the psychological equivalent of ragweed. Once the body becomes sensitized to pollen or ragweed, it takes only the slightest bloom in spring or fall to set off the biochemical alarm that results in runny noses, watery eyes, and the general misery of hay fever. But while only some of us are genetically programed to be plagued with hay fever, all of us have the capacity to become sensitized to stress.
Stress sensitization is uncharitably subversive. While the chemical signaling systems of body and brain are running amok in a person sensitized to stress, that person's perception of stress remains unchanged. It's as if the brain, aware that the burner on the stove is cool, still signals the body to jerk its hand away. "What happens is that sensitization leads the brain to re-circuit itself in response to stress," says psychologist Michael Meaney, Ph.D., of McGill University. "We know that what we are encountering may be a normal, everyday episode of stress, but the brain is signaling the body to respond inappropriately." We may not think we are getting worked up over running late for an appointment, but our brain is treating it as though our life were on the line.
Because some stress is absolutely necessary in living creatures, everyone has a built-in gauge that controls our reaction to it. It's a kind of biological thermostat that keeps the body from launching an all-out response literally over spilled milk. Sensitization, however, lowers the thermostat's set point, says psychologist Jonathan C. Smith, Ph.D., founder and director of the Stress Institute at Roosevelt University in Chicago. As a result, the body response typically reserved for life-threatening events is turned on by life's mundane aggravations. In this hothouse of hyperreactivity, bio-chemicals unleashed by stress may boil over at the most trivial of events, like our missing a train or being shunted to voice mail.
"Years of research has told us that people do become sensitized to stress and that this sensitization actually alters physical patterns in the brain," says Seymour Levine, Ph.D., of the University of Delaware. "That means that once sensitized, the body just does not respond to stress the same way in the future. We may produce too many excitatory chemicals or too few calming ones; either way we are responding inappropriately."
The revelation that stress itself alters our ability to cope with stress has produced yet another remarkable finding: Sensitization to stress may occur before we are old enough to prevent it ourselves. New studies suggest that animals from rodents to monkeys to humans may experience still undetermined developmental periods during which exposure to stress is more damaging than in later years. "For example, we have known that losing a parent when you are young is harder to get over than if your parent dies when you are an adult," says Jean King, Ph.D., of the University of Massachusetts Medical School. "What we now believe is that a stress of that magnitude occurring when you are young may permanently rewire the brain's circuitry, throwing the system askew and leaving it less able to handle normal, everyday stress."
It is the stew of chemicals released by such provocations that ultimately explains the noose stress ties between mind and body. "This new paradigm of stress demonstrates that there is a link between psychological events and physical eruptions, between mind and body," King says. "The psychological events that are most deleterious probably occur during infancy and childhood--an unstable home environment, living with an alcoholic parent, or any other number of extended crises." The new paradigm also firmly ties everyday psychological stress to such suspect complaints as ulcers, headaches, and fatigue....
Whether we end up stressed-out executives or laid-back surfers, we all start out with the same biological machinery for responding to stress. Stress activates primitive regions of the brain, the same areas that control eating, aggression, and immune response. It switches on nerve circuits that ignite the body's fight-or-flight response as if there were a life-threatening danger.
From this evidence researchers have concluded that the stress response is "wired" into the brain, that we inherit the same ancient reactions that jump-started hunter-gatherers to escape a charging saber-tooth tiger without having to give their actions time-consuming thought. Only this same life-or-death reaction is now called into play largely by non-life-threatening situations. Studies have found the same fight-or-flight circuits all working overtime in response to such varied stressors as extreme exercise, the death of a loved one, an approaching deadline. ....
By responding to the stress of everyday life with the same surge of biochemicals released during major threats, the body is slowly killing itself. The biochemical onslaught chips away at the immune system, opening the way to cancer, infection, and disease. Hormones unleashed by stress eat at the digestive tract and lungs, promoting ulcers and asthma. Or they may weaken the heart, leading to strokes and heart disease. "Chronic stress is like slow poison," King observes. "It is a fact of modern life that even people who are not sensitized to stress are adversely affected by everything that can go wrong in the day."
If stress has a central command post, it is the hypothalamus, a primitive area of the brain located near where the spine runs into the skull. By way of a dazzling array of hormonal signals, the hypothalamus is closely connected with the nearby pituitary gland and the distant adrenal glands, perched atop the kidneys. The so-called hypothalamicpituitary axis (HPA) has a virtual monopoly on basic body functions. It regulates blood pressure, heart rate, body temperature, sleep patterns, hunger and thirst, and reproductive functions, among many other activities.
About the size of a grape, the hypothalamus does its work by releasing two types of signaling hormones; those that stimulate glands to release other hormones and those that inhibit the glands from performing their job. Among the best known of these hormones are follicle-stimulating and luteinizing hormones, which, dispatched on a strict schedule from the pituitary, begin the monthly process that prepares women for pregnancy or menstruation.
Like a cherry attached by its stem, the pituitary gland hangs off the hypothalamus waiting to receive instructions on which of its many hormones to release and in what quantity. In hormonal terms it is the little gland that could. The pituitary releases substances that regulate growth, sex, skin color, bone length, and muscle strength. It also releases adrenocorticotropin, a hormone that activates the third part of the body's stress system, the adrenal glands.
When stress sets off the usual ferocious communication between the hypothalamus and the pituitary, the buck stops at the adrenal glands. They manufacture and release the true stress hormones--dopamine, epinephrine (also known as adrenaline), norepinephrine (noradrenaline), and especially cortisol. So responsive to the adrenal hormones are basic body functions like blood flow and breathing that even minute changes in levels of these substances can significantly affect health.
Slight overproduction of dopamine can constrict blood vessels and raise blood pressure; a shift in epinephrine could precipitate diabetes, or asthma, by constricting tiny airways in the lungs. If the adrenal gland slacks off on cortisol production the result may be obesity, heart disease, or osteoporosis; too much of the hormone can cause women to take on masculine traits like hair growth and muscle development and lead to one of the greatest fears of all for aging men--baldness. High levels of cortisol also may kill off brain cells crucial for memory.
Last Updated: 01/01/96
Copyright © 1991-2007 Sussex Publishers. All rights reserved.
The paper contains lots more.